Pre-Lab Practice: Object in Equilibrium

Review the Textbook:

- PHYS 1401: Serway \& Vuille: Sec. 3.2, Appendix A.5., Ex 4.2,4.6
- PHYS 2425: Serway \& Jewett: Sec. 3.4, Appendix B.4, Ex 5.1,5.4

1. The hypotenuse of a right triangle is 7.0 m , and the side opposite to angle θ is 5.0 m . What is the value of $\cos (\theta)$? (0.70)

Vector \vec{A} has a magnitude of 8.0 m and is at an angle of $45^{\circ} \mathrm{CCW}$ from the x-axis.
2. What is A_{x}, the x-component of vector A? (5.66 m)
3. What is A_{y}, the y-component of vector A? (5.66 m)

Vector $\overrightarrow{\boldsymbol{B}}$ has components of $B_{x}=-3.0 \mathrm{~m} / \mathrm{s}$ and $B_{y}=-7.0 \mathrm{~m} / \mathrm{s}$
4. What is the magnitude of vector \vec{B} ? $(7.62 \mathrm{~m} / \mathrm{s})$
5. What is the direction of vector B ? (-113.2° or 246.8°, where angles are measured CCW from the x -axis)

Given vectors $r_{1}=\left(1.40 \mathrm{~m} ; 30^{\circ}\right), r_{2}=\left(3.40 \mathrm{~m} ; 90^{\circ}\right)$, and the equation of a new vector $R=-4.00 r_{1}+1.50 r_{2}$
6. What is R_{x} ? (-4.85 m)
7. What is R_{y} ? $(2.3 \mathrm{~m})$
8. What is the magnitude of R ? $(5.37 \mathrm{~m})$
9. What is the direction of R ? (154.6°)
10. Solve for C in the following: $\mathrm{r}_{1}+2 \mathrm{r}_{2}+\mathrm{C}=0$.

$$
(\mathrm{C}=(-1.21 \mathrm{~m}) \hat{x}-(7.5 \mathrm{~m}) \hat{y})
$$

A horizontal ring is being pulled in three directions by force vectors F_{1}, F_{2}, and F_{3}. The forces balance, meaning the vectors add up to zero. Two of the forces are measured to be:
$F_{1}=(4 N) x-(8 N) y$ and $F_{2}=(-3 N) x-(6 N) y$
11. Express vector \vec{F}_{3} in component form.

$$
\left(\vec{F}_{3}=(-1 \mathrm{~N}) \hat{x}+(14 \mathrm{~N}) \hat{y}\right.
$$

12. Express vector \vec{F}_{3} in magnitude-direction form.

$$
\left(\vec{F}_{3}=(14 \mathrm{~N}) \angle 94.1^{\circ}\right)
$$

